General Specifications

GS 05P02D41-01EN

■ Overview

The UP35A program controller employs an easy-toread, 14-segment large color LCD display, along with navigation keys, thus greatly increasing the monitoring and operating capabilities. A ladder sequence function is included as standard. The short depth of the controller helps save instrument panel space. The UP35A also support open networks such as Ethernet communication.

Features

- A 14-segment, active (PV display color changing function) color LCD display is employed.
Two five-digit, high-resolution displays are possible. Alphabet letters can be displayed in an easy-to-read manner.
The guide display shows parameter names.
- Easy to operate

Navigation keys (SET/ENTER and Up/Down/Left/ Right arrow keys) are employed to facilitate making settings.

- 65 mm depth

The small depth enables the mounting in a thin and small instrumented panel.

- Ladder sequence function is included as standard. This function allows for creating a simple sequence control. Dedicated LL50A Parameter Setting Software (sold separately) allows for performing programming using a ladder language.
- Various built-in open network functions such as Ethernet are available. Easy connection with various vendors' PLCs is possible.
- Quick setting function

Setting only the minimum necessary parameters for operation is possible. (For single-loop control only)

- Equipped with a multitude of functions Universal I/O and eight control modes (cascade control, etc) are included as standard. PID control, heating/cooling control, feed forward control, etc. are available.

Functional Specifications

Program Pattern Functions

The program setting function increases or decreases the value of a target setpoint (SP) according to a given program pattern that varies with time. The controller stores two or more program patterns and the operator can switch between them according to the operating status. Each program pattern consists of multiple line segments (program segments). The operator sets the time interval of each program segment using the segment time or slope. The operator can also set such instructions as the number of repeats, start/stop, and status output (event output) for a given program pattern.

Number of Program pattern	Max. 2 (Max. 4 with option)
Number of program segment per pattern	Max. 20
Number of program pattern	Max. 20 Max. 40 with option (sum of program pattern for all program patterns)
Segment time	0.00 to 999.59 (hour.minute or minute. second)
Number of PV event	2
PV event type	PV (measured value) high/low limit SP (setpoint) high/low limit Deviation high/low limit Deviation high and low limits Deviation within high and low limits Target SP high/low limit Target SP deviation high/low limit Target SP deviation high and low limits Target SP deviation within high and low limits Control output high/low limit alarm Cooling control output high/low limit alarm
Number of Time event	4
Time of time event	0.01 to 999.59 (hour.minute or minute. second)
Number of repeat cycles	0 to 999, CONT (limitless number of times)
Wait operation	1 group
Fast-forwarding of program operation	1: Normal, 2: Twice, 5: Five times, 10: Ten times, 20: Twenty times Use this function when checking the program pattern setting. Only Time of Segment and Time event can be faster.
Synchronized program operation	If the progress of the operation of one unit is faster, the program operation can be forcibly stopped by digital input when switching between segments.
Program pattern link	Available
Program pattern edit	Addition and deleting of program segment can be available. Copy and deletion of program pattern can also be available.

Control Computation Function

Control Specifications

(1) Control Mode

Single-loop control.
(2) Control period

200 ms

Model and suffix code (See the model code)	Number of analog input points	Number of analog output points (*1)	Number of contact input points	Number of contact output points (*2)
UP35A				
$-x 0 x$	1	1	3	3
$-x 1 x$	1	1	8	8

*1: Excluding control output
*2: Excluding control output relays

Control Computation Specifications

(1) Combination of types of control and control modes

- PID control
- ON/OFF control
- Heating and cooling control
(2) Control Computation Function
(a) The number of PID parameter groups

Four sets of PID parameters can be set.
(b) Selecting the PID parameter group

The following PID parameter groups can be selected.

- Segment PID
- Measured input zone PID
- Target setpoint zone PID
- Reached target setpoint zone PID
- Local PID
- Reference deviation
(c) Auto-tuning
- Tuning results can be selected from two options, Normal or Stable.
- Tuning output limit can be set. (It cannot be used in heating/cooling control.)
(d) "Super" function: Overshoot-suppressing function
(e) "Super 2" function: Hunting-suppressing function
(f) RESET preset output function
(g) Input ERROR preset output function
(h) MANUAL preset output function
(3) Operation Mode Switching

	Start of program operation (PROG) Operation
Stop of program operation (RESET)	
mode	
switching	Start of local-mode operation (LOCAL)
	Start of remote-mode operation (REM)
Pause/cancel release of program operation (HOLD)	
	Advance of segment (ADV)
Automatic (AUTO)/Manual (MAN) switching	

(4) Control Parameter Setting Range

Proportional band	0.1 to 999.9%
Integral time	1 to 6000 sec. or OFF (using manual reset)
Derivative time	1 to 6000 sec. or OFF
ON/OFF control hysteresis (one or two hysteresis points)	0.0 to 100.0% of measured input range width
Preset output value	-5.0 to 105.0% (however, 0 mA or less cannot be output)
High/low output limiter	-5.0 to 105.0% Low limit setpoint < high limit setpoint

Tight shut function	When manual control is carried out with 4 to 20 mA output, control output can be reduced to about 0 mA.
Rate-of-change limiter of output	0.1 to $100.0 \% /$ sec., OFF
Output dead band	For heating and cooling control: -100.0 to 50.0% For position proportional control: 1.0 to 10.0%

Alarm Functions

- Types of Alarm
$\left.\begin{array}{|l|l|}\hline \text { Measured value } & \begin{array}{l}\text { PV (measured value) high/low limit alarm } \\ \text { Deviation high/low limit alarm } \\ \text { Deviation high and low limits alarm } \\ \text { alarm } \\ \text { Deviation alarm } \\ \text { Rave-of-change } \\ \text { alarm }\end{array} \\ \hline \text { Analog inn within high and low limits alarm } \\ \text { Auxiliary analog high/low limit alarm } \\ \text { Feedback input high/low limit alarm } \\ \text { PV rate-of-change alarm }\end{array}\right]$
- Alarm Functions

Alarm output action	Alarm stand-by action Alarm latch (forced reset) function Alarm hysteresis Alarm ON/OFF delay timer
Number of alarm settings	2
Number of alarm output points	Max. 2

Contact I/O Function

This function allows for allocating the input error condition, operation condition, alarm condition or other conditions to the contact input and contact output.

Contact input	Switch to PROG (Start of program operation)
	Switch to RESET (Stop of program operation)
	Switch to LOCAL(LSP) (Start of local-mode operation)
	PROG/RESET Switch
	PROG/LOCAL(LSP) Switch
	PROG/HOLD Switch
	Switch to HOLD (Start of hold-mode operation)
	Advance of segment
	Wait ON/OFF switch
	AUTO/MAN switch
	Auto-tuning START/STOP switch
	Latch release
	LCD backlight ON/OFF switch
	PV red/white switch
	Message interrupt displays 1 through 4
	Program pattern number selection
	PID number selection
	Manual preset output number selection
Contact output	PV event, Time event, Alarm
	Status output

Ladder Sequence Function

(1) Number of I/O Points

Number of digital input points	Up to 8
Number of digital output points	Up to 8

This is limited by the number of contact I/O signal points. (See the model code.)
(2) Types of Instruction

	Number of instructions	Remark
Number of basic instruction types	13	Load, AND, OR, Timer, Counter, etc.
Number of application instruction types	73	Comparison, reverse, addition/ subtraction/multiplication/ division, logic operation, high/ low limiter, etc.

(3) Sequence Device

	Types of device	Number of points
Digital I/O	Input relay	$8(\max)$
	Output relay	$8(\max)$
	M relay (bit data)	256
	DAT register (data)	28
	P register (parameter)	10
	K register (constant)	30
Special device	Special relay (bit data)	12

Process data and process relay can be used besides the above-mentioned.

(4) Program capacity

Max. Program capacity: 300 steps *

*: Available number of steps differs according to the parameters, using command and control period.

(5) Ladder computation period

Ladder computation period is the same as control period.

Communication Function

	Function	Method	Interface	Targets	Max connection	Communication Data
Modbus/TCP	A standard industry protocol allowing communications between the controller and devices such as PCs, PLCs, and DCSs.	Server	Ethernet	PLC and others	2 connections	PV, ALM etc
		Gateway	Ethernet + RS-485	RS-485: UT55A/UT52A/ UT35A/UT32A/UP55A/ UP35A/UM33A (*1)	31 units	
Modbus (RTU/ASCII)		Slave	RS-485	PLC and others, UT55A/ UT52A/UT35A/UT32A/ UP55A/UP35A/UM33A (*1)	31 units	
PROFIBUS-DP	Used for communication between PLCs and remote I/O, enabling highspeed data transmission.	Slave	RS-485	PLC and others	Number of nodes: 126	
		Modbus master function	RS-485	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A	31 Units (Main Controller is included.)	
CC-Link		Slave	RS-485	PLC and others	Number of nodes: 42 (Remote device)	
		Modbus master function	RS-485	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A	31 Units (Main Controller is included.)	
DeviceNet		Slave	RS-485	PLC and others	Number of nodes: 64	
		Modbus master function	RS-485	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A	31 Units (Main Controller is included.)	
Peer to peer	A protocol to coordinate the operation of two or more instruments controlling the same process.	Multi-drop	RS-485 (2 wire only)	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A	Read/Write: 4 units Read only : 28 units	
Coordinated Communication	A protocol to coordinate the operation of two or more instruments controlling the same process.	Master/ Slave	RS-485	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A (*2)	Master : 1 unit Slave : 31 units	
PC link	The proprietary Yokogawa protocol allowing communications to PCs, PLCs and touch panels.	Slave	RS-485	UT55A/UT52A/UT35A/ UT32A/UP55A/UP35A/ UM33A (*2)	31 units	
Ladder	A protocol to communicate to PLCs.					

*1: UT digital indicating controller, Signal conditioner JUXTA, Power monitor POWERCERT can be connected.
*2: UT digital indication controllers can be connected.

Physical interface

Ethernet	Standard : IEEE802.3 (10BASE-T, 100BASE-TX)
	Max segment length : 100 m
	Max. Connecting Configuration : Cascade Max. 4 level (10BASE-T), Max. 2 level (100BASE-TX)
RS-485	Standard: EIA RS-485
	Communication method: Two-wire harf-duplex or four-wire harf-duplex, start-stop synchronization, and non-procedural
	Baud rate: $600,1200,2400,4800,9600,19200$ or 38400 bps
	Peer to peer communication is only 19200 bps
	Maximum communication distance: 1200 m
	Terminating resistor: 220Ω (External)
	*3: 38400 bps for UP35A model code: Type $3=1$.
PROFIBUS-DP	Standard : Field bus (IEC61158)
	Corresponding version : DP V0
	Baud rate : 9.6k, 19.2k, 45.45k, 93.75k, 187.5k, 0.5M, 1.5M, 3M, 6M, 12M, AUTO (*4)
	Communication distance : 1200 m (9.6k to 93.75k), 1000m (187.5k), 400 m (0.5M), 200m (1.5M), 100m (3M to 12M)
	*4: AUTO automatically sets the baud rate to that of the host controller (PROFIBUS-DP master).
CC-Link	Supported on version : Remote device (Ver.1.10, Ver.2.00)
	Baud rate : 156k, 625k, 2.5M, 5M, 10M bps
	Transmission distance : 1.2 km (156k bps), 600 m (625 kbps), 200m (2.5 M bps), 150m (5 M bps), 100m (10 M bps)
	When used optical repeater : 7.6 km (156k) to 4.3 km (10M)
DeviceNet	Standard : Field bus (IEC61158)
	Baud rate 125k, 250k, 500k bps
	Transmission distance 500m (125k bps), 250m (250k bps), 100m (500k bps)

Hardware Specifications

Display Specifications

- PV display: 5-digit, 14-segment active color LCD (white/red)

Character height: 21.5 mm

- Data display: 5 -digit, 11 -segment color LCD (orange)
- Bar graph display: 12 -segment color LCD (orange)

$(2)+(3)+(4):$ Setpoint display

Names of Display Parts

Universal Input Specifications

- Number of inputs: 1
- Input type, instrument range, and measurement accuracy: See the table below.

Input Type		Instrument Range (${ }^{\circ} \mathrm{C}$)			Instrument Range (${ }^{\circ} \mathrm{F}$)			Accuracy
Thermocouple	K	-270.0	to	$1370.0^{\circ} \mathrm{C}$	-450.0	to	$2500.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit for $0^{\circ} \mathrm{C}$ or more $\pm 0.2 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$ $\pm 2 \%$ of instrument range ± 1 digit for less than $-200.0^{\circ} \mathrm{C}$ of thermocouple K $\pm 1 \%$ of instrument range ± 1 digit for less than $-200.0^{\circ} \mathrm{C}$ of thermocouple T
		-270.0	to	$1000.0^{\circ} \mathrm{C}$	-450.0	to	$2300.0^{\circ} \mathrm{F}$	
		-270.0	to	$500.0^{\circ} \mathrm{C}$	-200.0	to	$1000.0^{\circ} \mathrm{F}$	
	J	-200.0	to	$1200.0^{\circ} \mathrm{C}$	-300.0	to	$2300.0^{\circ} \mathrm{F}$	
	T	-270.0	to	$400.0^{\circ} \mathrm{C}$	-450.0	to	$750.0^{\circ} \mathrm{F}$	
		0.0	to	$400.0^{\circ} \mathrm{C}$	-200.0	to	$750.0^{\circ} \mathrm{F}$	
	B	0.0	to	$1800.0^{\circ} \mathrm{C}$	32	to	$3300{ }^{\circ} \mathrm{F}$	$\pm 0.15 \%$ of instrument range ± 1 digit for $400^{\circ} \mathrm{C}$ or more $\pm 5 \%$ of instrument range ± 1 digit for less than $400^{\circ} \mathrm{C}$
	S	0.0	to	$1700.0^{\circ} \mathrm{C}$	32	to	$3100^{\circ} \mathrm{F}$	$\pm 0.15 \%$ of instrument range ± 1 digit
	R	0.0	to	$1700.0^{\circ} \mathrm{C}$	32	to	$3100^{\circ} \mathrm{F}$	
	N	-200.0	to	$1300.0^{\circ} \mathrm{C}$	-300.0	to	$2400.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit $\pm 0.25 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$
	E	-270.0	to	$1000.0^{\circ} \mathrm{C}$	-450.0	to	$1800.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit for $0^{\circ} \mathrm{C}$ or more $\pm 0.2 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$ $\pm 1.5 \%$ of instrument range ± 1 digit for less than$200.0^{\circ} \mathrm{C}$ of thermocouple E .
	L	-200.0	to	$900.0^{\circ} \mathrm{C}$	-300.0	to	$1600.0^{\circ} \mathrm{F}$	
	U	-200.0	to	$400.0^{\circ} \mathrm{C}$	-300.0	to	$750.0^{\circ} \mathrm{F}$	
		0.0	to	$400.0^{\circ} \mathrm{C}$	-200.0	to	$1000.0^{\circ} \mathrm{F}$	
	W	0.0		$2300.0^{\circ} \mathrm{C}$	32	to	$4200{ }^{\circ} \mathrm{F}$	$\pm 0.2 \%$ of instrument range ± 1 digit (Note 2)
	Platinel 2	0.0		$1390.0^{\circ} \mathrm{C}$	32.0	to	$2500.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
	PR20-40	0.0	to	$1900.0^{\circ} \mathrm{C}$	32	to	$3400^{\circ} \mathrm{F}$	$\pm 0.5 \%$ of instrument range ± 1 digit for $800^{\circ} \mathrm{C}$ or more Accuracy is not guaranteed for less than $800^{\circ} \mathrm{C}$.
	W97Re3W75Re25		to	$2000.0^{\circ} \mathrm{C}$	32	to	$3600^{\circ} \mathrm{F}$	$\pm 0.2 \%$ of instrument range ± 1 digit
RTD	JPt100	-200.0	to	$500.0^{\circ} \mathrm{C}$	-300.0	to	$1000.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit (Note 1)
		-150.00	to	$150.00^{\circ} \mathrm{C}$	-200.0	to	$300.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
	Pt100	-200.0	to	$850.0^{\circ} \mathrm{C}$	-300.0	to	$1560.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit (Note 1)
		-200.0	to	$500.0^{\circ} \mathrm{C}$	-300.0	to	$1000.0^{\circ} \mathrm{F}$	
		-150.00	to	$150.00^{\circ} \mathrm{C}$	-200.0	to	$300.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
Standard signal		0.400 to 2.000 V						$\pm 0.1 \%$ of instrument range ± 1 digit
		1.000 to 5.000 V						
		4.00 to 20.00 mA						
DC voltage/current		0.000 to 2.000 V						
		0.00 to 10.00 V						
		0.00 to 20.00 mA						
		-10.00 to 20.00 mV						
		0.0 to 100.0 mV						

The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$
Note 1: $\pm 0.3^{\circ} \mathrm{C} \pm 1$ digit in the range between 0 and $100^{\circ} \mathrm{C}, \pm 0.5^{\circ} \mathrm{C} \pm 1$ digit in the range between -100 and $200^{\circ} \mathrm{C}$.
Note 2: W: W-5\% Re/W-26\% Re(Hoskins Mfg.Co.). ASTM E988

- Input sampling (control) period: 200 ms
- Burnout detection:

Functions at TC, RTD, and standard signal. Upscale, downscale, and off can be specified.
For standard signal, burnout is determined to have occurred if it is 0.1 V or 0.4 mA or less.

- Input bias current: $0.05 \mu \mathrm{~A}$ (for TC or RTD)
- Measured current (RTD): About 0.16 mA
- Input resistance:

TC or mV input: $1 \mathrm{M} \Omega$ or more V input: About $1 \mathrm{M} \Omega$ mA input: About 250Ω

- Allowable signal source resistance:

TC or mV input: 250Ω or less
Effects of signal source resistance: $0.1 \mu \mathrm{~V} / \Omega$ or less
DC voltage input: $2 \mathrm{k} \Omega$ or less
Effects of signal source resistance: About $0.01 \% / 100 \Omega$

- Allowable wiring resistance:

RTD input: Max. $150 \Omega /$ wire (The conductor resistance between the three wires shall be equal.)
Wiring resistance effect: $\pm 0.1^{\circ} \mathrm{C} / 10 \Omega$

- Allowable input voltage/current:
$T C, m V, m A$ and RTD input: $\pm 10 \mathrm{~V}$ DC
V input: ± 20 V DC
mA input: $\pm 40 \mathrm{~mA}$
- Noise rejection ratio:

Normal mode: 40 dB or more (at $50 / 60 \mathrm{~Hz}$)
Common mode: 120 dB or more (at $50 / 60 \mathrm{~Hz}$)
For 100-240 V AC, the power frequency can be set manually.
Automatic detection is also available.
For $24 \vee A C / D C$, the power frequency can be set manually.

- Reference junction compensation error: $\pm 1.0^{\circ} \mathrm{C}$ (15 to $35^{\circ} \mathrm{C}$)
$\pm 1.5^{\circ} \mathrm{C}$ (-10 to $15^{\circ} \mathrm{C}$ and 35 to $50^{\circ} \mathrm{C}$)
- Applicable standards: JIS/IEC/DIN (ITS-90) for TC and RTD

Analog Output Specifications

- Number of outputs:

Control output: 1
Cooling-side control output of Heating/cooling type: 1

- Output type: Current output or voltage pulse output
- Current output: 4 to 20 mADC or 0 to $20 \mathrm{~mA} \mathrm{DC/load}$ resistance of 600Ω or less
- Current output accuracy: $\pm 0.1 \%$ of span ($\pm 5 \%$ of span for 1 mA or less)
The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$.
- Voltage pulse output:

Use: Time proportional output
On-voltage: 12 V or more/load resistance of 600Ω or more
Off-voltage: 0.1 V DC or less
Time resolution: 10 ms or 0.1% of output, whichever is larger

Step Response Time Specifications

Within 1 s
(63\% of analog output response time when a step change of 10 to 90% of input span is applied)

Relay Contact Output Specifications

- Contact type and number of outputs: Control output: contact point 1c; 1 point Cooling-side control output of Heating/cooling type: contact point 1c; 1 point Event output: contact point 1a; 3 points (common is independent)
- Contact rating:

Contact point 1 c (control output): 250 V AC, 3 A or 30 V DC, 3A (resistance load) Contact point 1a (control output): 240 V AC, 3 A or 30 V DC, 3 A (resistance load) Contact point 1a (alarm output): 240 V AC, 1A or 30 V DC, 1 A (resistance load)

- Use: Time proportional output, event output, alarm output, FAIL output, etc.
- Time resolution of control output: 10 ms or 0.1% of output, whichever is larger
Note: This cannot be used for a small load of 10 mA or less.

Position Proportional Output Specifications

- Position signal input:

Slide resistance: 100Ω to $2.5 \mathrm{k} \Omega$ of total resistance 100% side and slide line: with disconnection detection
0% side: without disconnection detection
Current input: 4 to 20 mA (with disconnection
detection)

- Sampling period: 50 ms
- Measurement resolution: 0.1% of input span
- Position proportional relay output: Contact point 1a; 2 points, 250 V AC, 3 A or 30 V DC, 3 A (resistance load)
Note: This cannot be used for a small load of 10 mA or less.

Retransmission Output Specifications

- Number of outputs: Retransmission output; 1, shared with 15 V DC loop power supply or Cooling-side control output.
- Current output: 4 to 20 mADC or 0 to $20 \mathrm{mADC/}$ load resistance of 600Ω or less
- Current output accuracy: $\pm 0.1 \%$ of span ($\pm 5 \%$ of span for 1 mA or less)
The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$.

15 V DC Loop Power Supply Specifications

(Shared with retransmission output or Cooling-side control output.)

- Power supply: 14.5 to 18.0 V DC
- Maximum supply current: About 21 mA (with shortcircuit current limiting circuit)

Contact Input Specifications

- Number of inputs: See the table of Model and Suffix Codes.
- Input type: No-voltage contact input or transistor contact input
- Input contact rating: 12 V DC, 10 mA or more Use a contact with a minimum on-current of 1 mA or more.
- ON/OFF detection:

No-voltage contact input:
Contact resistance of $1 \mathrm{k} \Omega$ or less is determined as
"ON" and contact resistance of $50 \mathrm{k} \Omega$ or more as "OFF."
Transistor contact input:
Input voltage of 2 V or less is determined as "ON" and leakage current must not exceed $100 \mu \mathrm{~A}$ when "OFF."

- Minimum status detection hold time: Control period $+50 \mathrm{~ms}$
- Use: PTNO. switch, operation mode switch, and event input

Transistor Contact Output Specifications

- Number of outputs: See the table of Model and Suffix Codes.
- Output type: Open collector (SINK current)
- Output contact rating: Max. 24 V DC, 50 mA
- Output time resolution: Min. 200 ms

Heater Break Alarm Specifications

- Number of inputs: 2
- Number of outputs: 2 (transistor contact output)
- Use: Measures the heater current using an external current transformer (CT) and generates a heater break alarm when the measured value is less than the break detection value.
- Current transformer input resistance: About 9.4Ω
- Current transformer input range: 0.0 to 0.1 Arms
(0.12 Arms or more cannot be applied.)
- Heater current setting range: OFF, 0.1 to 300.0 Arms Heater current measured value display range: 0.0 to 360.0 Arms

Note: The CT ratio can be set. CT ratio setting range: 1 to 3300

- Recommended CT: CT from U.R.D., Ltd

CTL-6-S-H: CT ratio 800, measurable current range: 0.1 to 80.0 Arms

CTL-12L-30: CT ratio 3000, measurable current range: 0.1 to 180.0 Arms

- Heater current measurement period: 200 ms
- Heater current measurement accuracy: $\pm 5 \%$ of current transformer input range span ± 1 digit (CT error is not included.)
- Heater current detection resolution: Within 1/250 of current transformer input range span
- Break detection On-time: Min. 0.2 second (for time proportional output)

Safety and EMC Standards

- Safety: Compliant with IEC/EN61010-1 (CE), approved by CAN/CSA C22.2 No.61010-1 (CSA).
UL61010-1: Pending approval
Installation category: CAT. II Pollution degree: 2
Measurement category: I (CAT. I)
Rated measurement input voltage: Max. 10 V DC
Rated transient overvoltage: 1500 V (Note)
Note: This is a reference safety standard value for Measurement Category I of IEC/EN/CSA/ UL61010-1. This value is not necessarily a guarantee of instrument performance.
- EMC Conformity standards:

CE marking
EN61326-1 Class A, Table 2 (For use in industrial locations)
EN61326-2-3
EN 55011 Class A, Group1
EN 61000-3-2 Class A
EN 61000-3-3
C-tick mark
EN 55011 Class A, Group1
The instrument continues to operate at a measurement accuracy of within $\pm 20 \%$ of the range during testing.

Construction, Installation, and Wiring

- Dust-proof and drip-proof: IP56 (for front panel) (Not available for side-by-side close mounting.)
- Material: Polycarbonate (Flame retardancy: UL94V-0)
- Case color: White (Light gray) or Black (Light charcoal gray)
- Weight: 0.5 kg or less
- External dimensions (mm): $96(\mathrm{~W}) \times 96(\mathrm{H}) \times 65$ (depth from the panel face) (Depth except the projection on the rear panel)
- Installation: Direct panel mounting; mounting bracket, one each for upper and lower mounting
- Panel cutout dimensions (mm): $92^{+0.8 / 0}(\mathrm{~W}) \times 92^{+0.8 / 0}(\mathrm{H})$
- Mounting attitude: Up to 30 degrees above the horizontal. No downward titling allowed.
- Wiring: M3 screw terminal with square washer (for signal wiring and power wiring)

Power Supply Specifications and Isolation

- Power supply:
Rated voltage: $100-240$ V AC ($+10 \% /-15 \%$), $50 / 60 \mathrm{~Hz}$
24 V AC/DC (+10\%/-15\%) (for /DC option)
- Power consumption: 18 VA (DC: 9 VA, AC: 14 VA if
/DC option is specified)
- Data backup: Nonvolatile memory
- Power holdup time: 20 ms (for 100 V AC drive)
- Withstanding voltage

Between primary terminals and secondary terminals: 2300 V AC for 1 minute
Between primary terminals: 1500 V AC for 1 minute
Between secondary terminals: 500 V AC for 1 minute
(Primary terminals: Power* and relay output terminals; Secondary terminals: Analog I/O signal terminals, contact input terminals, communication terminals and functional grounding terminals.)
*: Power terminals for 24 V AC/DC models are the secondary terminals.

- Insulation resistance: Between power supply terminals and a grounding terminal $20 \mathrm{M} \Omega$ or more at 500 V DC
- Isolation specifications

| PV (universal) input terminals | |
| :--- | :--- | :--- |
| Control, retransmission (analog) output terminals
 (not isolated between the analog output terminals)
 Valve position (feedback) input terminals | |
| Control relay (contact point c/contact point a x 2) output terminals | |
| PV event-1 relay (contact point a) output terminals | |
| PV event-2 relay (contact point a) output terminals | |
| Time event-1 relay (contact point a) output terminals | |
| Position proportional relay output terminals | |
| Contact input terminals (all)
 RS-485 communication terminals circuits | |
| Power | |
| 24 V DC loop power supply terminals | |
| Contact output (transistor) terminals | |
| Ethernet communication terminal | |
| PROFIBUS-DP/DeviceNet/CC-Link communication terminals | |
| Current transformer input terminals | |

The circuits divided by lines are insulated mutually.

Environmental Conditions

Normal Operating Conditions:

- Ambient temperature: -10 to $50^{\circ} \mathrm{C}\left(-10\right.$ to $40^{\circ} \mathrm{C}$ for side-by-side close mounting)
For the CC-Link option, 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $40^{\circ} \mathrm{C}$ for side-by-side close mounting)
- Ambient humidity: 20 to 90% RH (no condensation allowed)
- Magnetic field: $400 \mathrm{~A} / \mathrm{m}$ or less
- Continuous vibration at 5 to 9 Hz : Half amplitude of 1.5 mm or less, $1 \mathrm{oct} / \mathrm{min}$ for 90 minutes each in the three axis directions
Continuous vibration at 9 to $150 \mathrm{~Hz}: 4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less, $1 \mathrm{oct} / \mathrm{min}$ for 90 minutes each in the three axis directions
- Short-period vibration: $14.7 \mathrm{~m} / \mathrm{s}^{2}, 15$ seconds or less
- Shock: $98 \mathrm{~m} / \mathrm{s}^{2}$ or less, 11 ms
- Altitude: 2000 m or less above sea level
- Warm-up time: 30 minutes or more after the power is turned on
- Startup time: Within 10 seconds
*: The LCD (a liquid crystal display) is used for a display portion of this product. The LCD has a characteristic that the display action becomes late at the low temperature. However, the control function is not affected.

Transportation and Storage Conditions:

- Temperature: -25 to $70^{\circ} \mathrm{C}$
- Temperature change rate: $20^{\circ} \mathrm{C} / \mathrm{h}$ or less
- Humidity: 5 to 95% RH (no condensation allowed)

Effects of Operating Conditions

- Effect of ambient temperature:

Voltage or TC input: $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or $\pm 0.01 \%$ of F.S. $/{ }^{\circ} \mathrm{C}$, whichever is larger
Current input: $\pm 0.01 \%$ of F.S. ${ }^{\circ} \mathrm{C}$
RTD input: $\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ (ambient temperature) or less Analog output: $\pm 0.02 \%$ of F.S. ${ }^{\circ} \mathrm{C}$ or less

- Effect of power supply voltage fluctuation

Analog input: $\pm 0.05 \%$ of F.S. or less Analog output: $\pm 0.05 \%$ of F.S. or less (Each within rated voltage range)

■ Block Diagram

Terminal Arrangement

■ External Dimensions and Panel Cutout Dimensions

- General mounting

- Side-by-side close mounting

" N " stands for the number of controllers to be installed. However, the measured value applies if $\mathrm{N} \geq 5$.
Normal tolerance:
\pm (value of JIS B 0401-1998 tolerance class IT18)/2

Model and Suffix Code

*1: English, German, French, and Spanish can be displayed as the guide display.
*2: \quad The /HA option can be specified when the Type 1 code is "-0" or "-2."
*3: When the /CT option is specified, the UP35A does not conform to the safety standards (UL and CSA) and CE marking.

Items to be specified when ordering
Model and suffix codes, whether User's Manual and QIC required.

Standard accessories

Brackets (mounting hardware), Unit label, Operation Guide.

Accessory

Name	Model
Terminal cover	UTAP001
User's Manual (CD-ROM)	UTAP003

[^0]
Special Order Items

Model code	Suffix code	Description
LL50A	-00	Parameter Setting Software

[^0]: User's Manual(CD-ROM)

